If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+14X-61=0
a = 1; b = 14; c = -61;
Δ = b2-4ac
Δ = 142-4·1·(-61)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{110}}{2*1}=\frac{-14-2\sqrt{110}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{110}}{2*1}=\frac{-14+2\sqrt{110}}{2} $
| 63=-4x+3(-3x-5) | | 4-3x+4=17 | | 30+0-5=k0-k+1 | | 9.18(m+4/9)-16=118 | | 4-3x-4=17 | | 10x+9=3x-6 | | 3+x=8-2x | | x+0.15X=40000 | | 7/10+x=37/10 | | 3+x=8-3 | | 8.3.8(s-6)+4.6=-22 | | 20x+15x=500 | | 7.4(c-3)-6=10 | | 10x=18x+15 | | 14+x=105 | | e-5=0 | | 4u-44=-3(u+3) | | (x^2+3x)^2-(x^2+3x)-6=0 | | 0.7x-2.1=0 | | y*2=7 | | -12+x/9=-15 | | 5(x+23/122)=6x+69/61 | | 4x+12=7x-56 | | 4x-2+4x=0 | | 3x+168=360 | | 3x-4-3x=0 | | 3v+(-9)=21 | | 3x+201=360 | | x2=49/36 | | Y=-8y=-2×-12 | | (x*100)+(x(+7-57*100))=0 | | 7(x+5)=7-7(x-2) |